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SUHHARY OF RESEARCH
Various aspects of the propagation of an intense laser bLeam
through the atmosphere are considered. The basic laser-fluid
equations are presented and a linearized anal /sis of these equa-
tions is given which predicts a very low power threshold for
I'rueckner-Jorna-type convective instabilities. Another class
of instabilities is predicted to be of more practical importance
than the convective instabilities and an effective HKeynolds number
is derived which may help to characterize these turbulent insta-
bilities. A computer solution of the full set of non-linear
equations is described, and the concept of "utility aralysis"
of numerical differencing schemes is introduced. With the com-
putation scheme used, the laser pulse could te followed for only
10~ seconds; SO encrmous energy was put into the pulse to en-
hance the interaction with the fluid. “hus the initial pulse
distortion could te observed. Analytical evaluation of the com-
puter results produces a detailed quantitative check and suggests

that a combination of analytic and rnumerical methods would al-

low a pulse to be conveniently followed for much longer periods

of time.
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Instabilities of intense laser beams in air®

John D. Reichert

Tevas Tech Universiae, D ubbock Tovas Tid0v

W. G Wagner and W. Y, Chen

nsvervty of Sotethorn Caligornna, Los Angelos, California WX07
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Vanous aspects of The propagation of an mtense Tases beam thiagh the atmosphiere are considered

the Daste basee T vauatiens ave presented amd o tacanized amabysis of these ssprations s g ven

whivh  predicts sy Jow powes dieshol for Bracckuer Jumactype consective imstabibines

Arthes vlass ol st dnliaes s predicted 1o be of arne prachival impartance than the convecinge

nestabulities and an vtbectne Reynolds nionber s denved whieh miy help 1o cincastenze these

Tuthulent sastabibities In the followang papec by the saae aidhors a computer sabatia of thy full

set ol ponhmear eguanons s descnbed wesd the umal development of the Laser-Pusd nderastion i

mivestgated

I. INTRODUCTION

The sresent paper and the following paper! are con-
cernea with the distortions of a kwser beam produced by
density and thermal varations in a fluid medium. These
distortions hiave been the subject »f many investigations
which can be classitied into two groups, depending upon
whether time dependence is considered, Most avaikible
experiments are convemently uniterstood by reference to
theoretical studres ol the 2rass effects of thermal dep-
ositlon and fluid motion which assume that a steuady
state will be achieved for the defl>ction and cistortion
of the lager heam. On the other hand Brueckner and
Jorna? have tiscovered that some of the solutions for
Leant propagation are unstable so that vnder certain
conditions a steady stiate moy not develop. The Brueck-
ner=Jona instabitities were discavered in o lnearized
analvsis, but the threshold for such instabilities bas not
heen discussed previously. The Brueckner-Jorna in-
stabihties are not observed in practice because they are
convective instabilities and ciannot levetop within typical
distances allowed for the propagation of beams In the
laboratory.

In the present paper the linsorized analysis is present-
ed, keeping the four-photon cousling Induced by periodic
fluctuations in the dietec ric constant, so that among
other things the threshol | hehavior will be exposed. The
hasic equations are given in Sec. 1l and the lincarized
analysis is presented in Sec, 1. In Sec. IV another
class of instabilities is predicted to be of more practicai
Inmportance than the convective instabilities and an cf -
fective Reynolds number is derived which may help to
characterize these turbulent Instabilities.

The companton paper! describes a computer solution of
the full set of nonlinear laser-fluid equations. Enorniwous
power was presumed for the laser beam In ovder to
drive the laser-fluid interaction as fast as possible in an
attempt to watch the onset of distortions of the heam,

Il. BASIC EQUATIONS

When an intense laser bean propagates through a fluid,
many inlersting phenomena take place, This laser- fluld
system c¢an he described by a macroscopic model whicl
Involves Maxwell's equations, the Navier-Stokes equa-
tion, an cnergy conservition equatian, and the continuity
equation for fluid motion, These equatious, which de-

"woe v e oy 4 v s ~no. Wty

scribe the behavior of i;lll'llSP electromagnetic beams
and the associated sound and thermal fluctuations, are
coupled by stimulated Raman scattering, electrostric-
tion, the high frequency Kerr effect, absorption heat-
ing, and the density and temperiture dependence of the
diclectric constant. In this paper a systematlc discus-
sion is presented for an intense laser beam propagating
throngh alr, which has a negligible Rerr constant, If
the frequencies are outslde the Raman scattering range,
the instabilities are primarily caused by optical-ac-
coustic coup!ing of the laser beam and the gases. These
effects are of long duration compired to those of self-
focusing. As the beam passes through air, the Intensity
profile induces a nonuniform tewpervature gradient
transverse to the propagating direction of the beam, due
to the enerpy absorption from the beam. Thls thermal
nonequilibrium and electrostriction together ciause the
peneration of a density gradient and hence a sound wive.
These density changes react hack on the inc’ dent heam
through changes In the dielectric constant.

The equations describing propagation of electromagnetic
radiation and the equations describing fluid behavior are
wihdely known.>=® Dropplng untmportant terms from the
full equations, we take the following set of nonllnear
coupled partial differential equations for description of
the macroscoplc representation of the laser-fluld
svstem:

Wave equation and Clausius-Mosotti relation:
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o Gl =D0o

vll)[- ia 3 Dt (f:,‘ 4+ T (KVT) + (1(‘\/7(’3?)"»

(6)

oo+ 52) +w s g
fluid continuity equation:
L 4w =0; (8)

equation of state:
P=Pp,T)=RpT. (9)

in the wave equation the term invoiving o, the iinear
ahsorption coeffictent, is assaciated with a modei for
the absorption of cicctromagnetic energy by the fiuid.*
The absorption coefficient is taken to be independent of
the frequency of the electromagnetic radiation, so the
modei is not vaiid near the resonance lines of the
moiecules in the fiuid. Aiso the modei does not inciude
kinetic rate equations, sa saturation effects are not
considered. In the present model the eiectric field E
wili be damped by a fuctor exp(- ' @z), where 2 is the
direction of propayation and the energy deposited in the
medium is taken to be acVe(F?,,=al,, where I, is the
laser intensity in erg/sec cm?,”’
The terms ¢, and ¢, ave the linear and noniincar permit-
tivity coefficients, respectiveiy, p is the fivid mass
density, and v is the velocity of a “material ciement” of
the fiuid. The convective derivative D't follows the
motion of a materiai “puarticie” of the ftuid relative to a
fixed coordinate system and is expressed in the form

L) _°0)

‘IT = —E‘T +v.¥().
The vector g is the gravitational acceleration vector and
n and n’ are the shear and compressional viscosity co-
efficients, respectively.

The electrostrictive force density {,, Is given by

(fos) L= <5:;; °h>“!

where 0, is the interaction stress tensor for the elec-

tromagnetic field and the fluid and the angular brackets
indicate a time average over several optical periods. A
de-ivation of the stress tensor is given on p. 67 of

Ref. 4:

1 ar
o,,r’-gl;"[r-p(:. ) ]b”*rh‘,lz’,,
I’) r

but this tensor is ot strictly correct for optical fields
hecause an isothermai constraint was imposed. A simi-
lar derivation with an isentropic constratnt gives the
same result, exrept that the partial derivative (3¢ /ap)y
at constant temperature is repiaced by (2¢/ap),, the
derivative at constant entropy. The difference in these
two constraints is contained in the thermodynamic
relation

MY (% B\ Gy 2\
”(?o).'p("n)r”(”).(ﬂvi ﬁT) ] "

The difference term in Eq. (10) is very small because,

for jases, (7¢/aT),=0. The term (yC,/f% - Ar)”! con-
tributes a factor of roughlty 4. Actmily, neither con-
straint is strictiy valid, but corrections would be small
and would necessitate a detaiied examination of fluid
boundary layers and the explicit mechanisms of heat
deposition in the control volume.

The thermodynamic quantittes appearing in the above
equalions are C, and C,, the specific heats in erg/gdeg
at constant volume and pressure, respectively, and y is
the ratio of specific heats, (‘,,-'Cv: B ls the thermal ex-
pansion coefficient, —(1/p0?p/2T),; v, Is the isentropic
velocity of sound, [(?P/ap),]'/?; and « is the thermal
conductivity of the fluid.

Due to the compiexity of the iaser-fiuid equations shown
abovc, it is not possible lo obtain exact solutions analy -
tically. The 1.nearized*soiutions have been discussed?
and a number of computer solutions have recently been
given hy variaus groups.® !n Sec. lil a lincarized aniiy-
sis of this set of equations is presented.

111, LINEARIZED ANALYSIS

Linearized analysis is a standard §~rturbation technique.
In this scheme it is assumed that each of the dependent
variabies in the problem can be expressed as the sum of
its slowiy varying zevoth order component and a small
first-order correction.® In this way, a set of linear
cquations for small disturbances is obtained. This ap-
proach to the anaiysis of the laser-{ivid system was
first investigated by Brueckner and Jorna.? In the pres-
ent approach, two variables are used to describe the
perturbed eiectromagnetic field, one for the component
of the field which is vibrating tn phase with the primary
heam and one for the component out of phase. In this
way, the four-photon coupling induced by periodic fluc-
tuations in the dieiectric constant can be inciuded. This
coupling was not included in the original formulation
given by Brueckner and Jorna and accounts for the ab-
sence of a threshold in their analysls. The aispersion
reiation for these linearized equations has been ~~luat-
ed and is more complicated in structure than ttat pre-
sented by Brueckner and Jorna. For propagaticn
through air, however, the numerical differences are
minor. The wave with the largest growth rate, resulting
from resonant interactions between scattered ciectro-
magnetic waves and the thermal wave, propagates al-
most perpendiculariy to the laser beam. The direction
is such th:t the change in frequency of the seattered
clectromagnetic wive il the frequeney of the therinal
wave (which is zero) are approximately the same.

Writing
E=zEq 1 E,
pP=potpy,
r=T,+T,,

! -2
€oe =% 1t0r + €200 E(0V u

and taking

Eo = 3¢, Eoexplilwyl =k 2)|expl-jaz) +c.c.,  (12)
 }

E(l) s 2‘=y{.fexp[i(w0’ -ko * x)I
+gexp[=ilw.t -k +X)|lexp(-}az) +c.c., (13)
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(7“)"%‘('r':)“-‘n[iw-k-x>l*c.0-- W4
)
where

w, ® luser frequency,

W, Tw, tw, (15)

K, 2k.é, 1k,
and treating the veloclty v to be a first-order quantity,
we obtain irom Fgs. (1)=(9) the following four equations
rektting f, w2, p’, and T7;
(e + Yoo EDw? = 211 4 (b y 0 Fow?ly

+(zAE )2’ +(ABE WY1 = 0; (16)
Ceaa ki) *[(’o. i ;'um”‘:)wf -y

+(AAEw?p’ + (L BEwH)T’ =0, an

(veteo) 2Egl £ +[arete, ) 12l + {ilC ty = 1)/Blwlp’
+(=xk? = ip,C )T =0, (18)
(5000 = Do, +20E L1 £ 4 [2legy = 1Ney, + 2DE K
+ {w‘ - fA\'ulL'z = [lll =) ‘,l{'(’(,, -1 )lf\ E:‘)"'x}l"
+{[= w28y + Hleg, = VVBEE2)TY 0, (19)

Throughout these equations, F, has been written in
place of | E |, Since only the mugnitude of the complex
amphtude appears, I, may be cousidered to be real and
positive without loss of generaiity., For convenience in
writing these equiations, the following notation has been
irtroduced:

w=vlly, (20)

s0 thit « is the isothermal speed of sound in the un-
perturbed medium, uand

o e 22\ g2 1o, =10 +2)
A (\1“)1'.’(V')T(l'(m)":“u 3 T )

e o ; .
(), 0

Ne=@2n40')/ py.

The consistency condition for the hinearized equations
is the vanishing of the deterntinant of the coefficients of
Sy £, p'y and T, Thus we obtain the following relation
between the frequency w and the wave vector K, the dis-
persion relation for the system:

{(w =i k) w? = iNwk? = (1 = AP = (y = 1)(a? = B")ok?)
x[£,8, = b0 EME w? + £ wd) 20, |
= =(AR[Ep, AMw = ix'k?) +ilaeng, 8/C Mo - B')|
+ B{[(y - 1) /B A wh? +ilaven,,/poC Mo =iNwk?
=@ =AW LEHE w0 4 £ ) 20, (22)

In order to put Ey. (22) in the siightly more compact
form shown iabove, the following additionsl abbrevii -
trons have been mtroduced:

K =x/mC

Moo = (760" % = Index of refriction of unperturbed
medium,

J. Appl. Phys,, Vol. 44 No. 8, Aagust 1973

I = -';n(,,rl-f(’,- power in incident inser beam/unit area,
A=, = DAES, (23)
B = (e = DBEY/ pofs,

2wk, =] =e0l,

2w,k = cME g0

For comparison, the dispersion relation obtained by
Brueckner sud Jorna® for frequencies outside the Raman
scattering range is

wlw? = 03k* = iNwk?)E, +1(vw +18)k% =0, (24)
where
£y 5 (A = (2ep00,/m3,0 0000 | - g by /ekPw = (c/ng, )k, 12,
vEpy Ak /ndc, (25)

8=2A8 akt /12,C,.

Althaugh Eq. (22) is considerably more complicated in
structure than Eq. (24), the general features of the two
equations are the sime. As a first approach to the
amilysis of (22), one should realize that the power in
the primary iaser beam is propurtionai to E?. Thus,
the free modes of the system ein be obtained by ietting
22— 0. With no power in the incident beam, therefore,
(22) reduces to

{lw = ik/p,C I Kw? = iNwk? = 4813) = (5 = Dt wh®}
x[‘_z(,‘,: + k%4 2k k) = rolwy + WP
X[ k] + k2 =2k k) =y 0 (wy - w)?] =0. (26)

The first fuctor in (26) contiins a nonpropagating ther-
mil wave and two ditinped sound waves coupled by the
term (y = N wk®. The iast two fictors correspond to
the four free modes for seattered undamped electro-
magnetic wives:

w/wy =02 [1+k/ k] +20k,/ |k, |13, i

where o=t 1, specified by glven values of #? and )
Two of the roots itre low frequency (w <« w.), whereas
the other two have frequencies of the snme order as the
laser frequency. it is efear that the roots at the high
frequency should he eiiminated, because it has been
assumed previousiy, in evaiuating time averages, that
the perturbed sotutions viry much more siowly than the
optical waves. Therefore, factors iike

Lo R (28)
wiil be repiaced by

fLiolZw e h, - w,), (29)
where

cLrc/[epal'’? = velocity of light in the medium.

Thus the free modes wili inciude three thermal-sound
wiaves and two clectromagnetic waves,

ALl of the terms in (26) resu't from the ieft-hand side of
(22) because the right-hand side 1s proportional to the
power in the primiary kiser beam. Now, as the power in
the Lisor beam is turned ou, the right-hand side couples
the five frecaaodes desertbed by (26), Additional tiny
coupling arises inside the left-hind side rtself through
the A7, 137, and ey, torms,
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For detailed consideration, the case of a primary laser
beam at 10,6 u propagating through air at approximate-
ly 10°C and at standard pressure will be discussed. The
numerical values for the parameters appearing In the
dispersion relation are'®

wy = 1.773 x10" sec™,
k, =5920 cm™,
Po=1.25x10"% g/em?,
N=0.284 cm? 'sec,
3=13.67710" deg,
C,=T1.143x10" erg/g dey,
k' =0,28 cm?/sec,
ny=1+2.82x10™,
¥ =8.39 %10° (cm/sec)?,
s kA
f0,=1+5.65%10", (30)
a=(3210"7 cm*)a,,
amg, e’ B/C = 3.831 X107,
oMo,/ peC, = 0.988a,,
erio E3=(1.37x10"% sec®/gem®),,
A=0,452 cm®/g 4 (1.10210°% cm sec?® g),,
Aly =1)/23=24.7T cm®dey /¢
+(6.00x10°*" cmsectdeg '),
£, =1+45.65%10™ +(1,37210" sec’/gem?),,
A= (2.84 710" em?sec/p), +(1.38>107 sec/¢*),
B=130,E}/Ty==(4.84 210" sce?/gem?deghly,
B’ = =(0.662x107*" sec*/p)l}.

In the above list a dimensionless absorption constant a,
of order unity has been introduced and the power I, is
in units of erg/sec per cm?. Now, using these numerical
values, one finds Uit the power-dependent terms are
very small for power fluxes less than 10 MW/em?, ex-
cept for the term which represents energy abs)rption.
In other places in the dispersion relativn, the pawer-
dependent terms are connected with the nonlinear index,
and will be vaitted in the following. (The terms omitted
are related to celf-focusing in 2 manner described by
Brueckner and Jorna.?) This neglect of the nonlinear
index and of the weak dependence of the optlcal coeffi-
cients of gases on the temperature for fixed density
allows the simplification of the dispersion reliation to

[(w =ik k) w? = iNwk? =1407) = (y = D wh? |
(cgh, =w ek, =w)
= (ARPw I 200 N(eph, = w,) +{eph. = w)]
Sihpolw = 1k'kR) 4 jacn, i/ C . (3i)

In addition, for air at reasonable powers, the term
Ly Alw =i’k on the rvight-hand side is negligible com-
pared to acnyf? 'C,. Introducing the va riable

vehy/k, (32)

instead of k,, and defining
r=Awy fad, /7, C,, (33)

which carresponds to the power parameter used in Ref.
2, the dispersion relation can be written in the form

(w =ik k)N w? = iNwE? = 1?1?) = (y = D wk?
yitvik{lw = Yioey, = c (v + 13 /28 )|
~lw=tYiac, - (kv = 17/28)]"). (34)

The problem at this stage is the determination of the
maximum growth rate of any Fourler component of a
distortion of the plane wave as a function of the ab-
sorbed power from the heam. That is, one must

solve the dispersion relation for the frequencles as a
function of k, v, I, and the characteristic purameters
of the medium, ard then find the maximum value of

= lmw for real vind k with |¢l <I. Sich a problem can-
not be solved analytically without further approxima-
tions. One region of interest would be the high power
limit, where the driving term waould overwhelm the
losses resulting from thermal conductlon, viscosity,
and the absorption of electromagnetic energy. In that
case, all the imaglnary terms in Eq. (34), with the sole
exception of the i immediately preceding 7, can ke
dropped, reducing the dispersion relatlon to the lorm
employed by Bruecker and Jorna in Eq. (45) of Ref. 2.

To proceed analytically, Brueckner and Jorna neglected
the term in the second set of hriackets on the right-hand
side of (34), und assumed that the maximum growth rate
would occur samewherc on the curve in the v, k plane
determined by the constraint

Re[w = cy (kv +k2/20,)|= 0, (35)
Along that curve, the maximum growth rate is
(=tmw),,, = V7T(1.08), (36)

which corresponds to

0.97515 1 vz
My B = V(e
pl={35 (0. 56305)(0.93063) : @)

(These results differ from those in Ref. 2, which are
erroneous,) There is no assurance that the actual maxl-
mum growth rate does lie along the vne-dimensional
subset of the v,k plane assumed in Ref, 2. We have con-
ducted a search along the line

v+k/2k, =0,
However, the result for the maximum,
1/7(1.06), (38)

is 2°/ smiltler. No other enrve in the v,k plane has been
found which allows an analyticil search, Nevertheless,
one suspects that these answers are sufficiently close
and that further analytical cffort Is not justitied, be-
cause of the previous approximations.

An interesting anknown not discussed previously is the
power flux required to stimukite these instabilities.
This threshold power is clearly a critieal function of the
losses in the system, which therefore renders it jm-
portant to treat them carefutly. If the second term on
the right-hand side of Eq. (34) is dropped, the instabil-
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ity appears to have no threshold, because the conduction
loss, which must be overcome, vianlshes as k- 0. jlow-
ever, as k-0, the Stokes and anti-Stokes terms on the
right-hand side of Eq. (34) tend to cancel each other,
and, therefore, there is a threshold power flux lor
these stumulated thermal Ravleigh scattering instabil-
ities, Uslng (34), a computer search for this threshold
was performed and led to the resalt,

) i rosora = 0.329 mW/cm?, (39)

This threshold was located at /2 0,04 em** with v

11.1 210", The degpeneracy in the value of v occurs
because of the symmetry property contained in (34),
v - =vimplies jw-+{iw)*, The dispersion relation of
Brueckner and Jorna contnued no threshold for the
convective instabihties and, therelore, suggested that
Instabilities mieght be present for extremely low beam
intensities. The j-mW per ¢cm? threshold obtained in the
present analysis is certainly smull in relation to in-
tensities available for experiments.

The presence of a wind does not alter the growth rates
for distortions. This can be easily scen by considering
the problem from a frame of reference moving with the
fluid. A uniform beam remains a unitorm bean in the
moving, frame, although its direction of propagation is
shifted. This shilt in direction has no effect upon the
stability discussion. The very iow convective instability
threshold does not mean that such effects are easy to
observe or are of practical importance, An extremely
long, and carelully protected, optical path length would
be required in order to see these instabilities grow to
obscrvable si1zes. Indeed, such instibilities have never
been observed in the laser-fluid system.

There is, however, another class of instabilities in-
volving the balince between Inertial terms and bouyancy
forces in the fluid  Such instabnlities are discussed In
Sac. V.

IV. BEAM-FED TURBULENCE

Many experiments have heen reported for which the-
ories assuming steady -stite heam profiles, after initial
transients die out, provide rather good explanations of
the principal features. ffowever, that is probably true
only because these experlinents are conducted at rela-
tively low power fluxes. Theorctically, one expects a
time -dependent state of the system because of the In-
stabilities discussed carlier, Such instabilities are not
observed In practice beciuse they eannot develop within
the distinces allowed for the propagation of heams,
ltowever, alternate considerations tor a beam of finite
cross section suggest that the beam may drive the fluid
Into a time-dependent, or turbutent, state at powers
which are not completely unrcasonable,

It may be impossibic to prove analytleally tat such a
turbulent state develops, because the tuvestigation of
hydrodynamic stability is very difticult e¢ven for the
simplest flows. lowever, an argument ¢an be made
from dimensional considerations, an approach that
promises to he very useful. Namely, lor the problem
of o beam of rads a and power Hug T passing through
air, atis possible to estiate a parameter ", which
plays the role of an effective Reynolds number for our
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problem. It will be shown that the parameter W takes on
values of the order of 30000 for a beam with Intensity
I=1 kW/cm? of radius 1 m. Since it s known that some
flows with Reynolds numbers substantiatly lower than
30000 are turbanleut, the flows for the laser-heated
atmospherle path should also be expected to show signi-
ficant time dependence.

Conslder the equations of motion for the alr and the
equation governing heat transfer, which take the follow-
Ing form if it is assumed that the alr can be assumed
incompressible (that amounts to dropping terms of order
1¢/1?, where i ls a typical tlow speed, and v, is the
speed of sound; for the problems under consideration,
w’ v} will be less than 107, and the incompressible
fluid approximation will be qulte good):

MV IV = = TP~ 3T 08 +(p/p )y T¥
+(p/pdin 40" )0V v),
MTv) = =(ve C)p = gplv. O)T,, (40)
PCAVe )T = al + T+ (kTT),)
+(p/pnlyy,, +0, P An(Tev)],

Assumling the Reynolds number is high, the inertial
terms will domijnate the viscous terms in the Navier-
Stokes equation. Thus, there must be a balance between
the inertial terms and the bouyaney forces, which im-
plies that pu® ‘a ~a 874, where p is the density of air,
Bis the coclficient ot thermal expanslon, T, is a typlca!
value tor the temperature rise, and g 1s the accelera-
tion due to gravity. The pressure variation will be of
order pme*, In the heat-transfer equation, the convection
term will domlnate the conductlon term, and the heam
heating will overwhelm the viscous dissipation, so that
there must be a balance between heat deposition from
the beam and convective heat transfer, which implies
that pC,uT,/a ~al. Combining these two relations we
find that v ~ o Ba*ly/pC,. With thls expression for v, we
then define a parameter i, which is expected to in-
dicate regimes where steady flow and where tinme -de -
pendent flow may be anticipated. iV is an estimate of the
relatlve importance of inertial terms to viscous terwms
in controlling the tlow:

W=aup,/n
=alpo/nNapaly/pC,)' 2. (41)

For a beam with I=10' erg/cm?*sec, a=100 cm, ey
=273°K, and a=3x10"" ¢m*', W - 30000,

For many experiments described in the literature, the
values of W are much smaller, and thus one would not
expect any turbulent iluid flow to be obs:rved. For ex-
ample, in the original experiment of Gordon Leite,
Moore, Porto, and Whimery'' the parameter W takes
on a value about 1077, aud in the more recent experi-
ments of Smitht and Gebhardt, ' il is of order 10,

The parameter W introduced here is different from the
Grasshof number, which is referred to in some discus-
sions of the conveetive fiows set up by the absorption of
energy from a laser beam. ' [n fact, the conceptudal
basis lor using the Grasshof number in i discussion at-
tempting to explain the transition between smooth low
and ttme-dependent ltow seems less relevant because

e e e
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the Grasshof number appears to be more sensible when
tne thermal bouyint forees are balauced by viscous
forces. In the present discussions, the thermal houyant
forces are baianced by inertial effects. It turns out that
the numiber W is essentiaily the square root of the
Grasshof number. '

We are planning experiments to determine the critical
vaiue of W, W_, which deterniines the onset of turbulent
conveetive fiows for the geonietry appropriate to laser
beam transmission. It is also our aim to attempt a the-
oretical evajuation of this criticai vajue. At the present
tinie we can oniy speculate that W_. may be between 10?
and 10*.'* The theoretical approach appears fairiy dif-
ficult because the question of the stability of flows even
without heat sources has only been answered theoretl-
cally for very simple geometries.'™'? The question of
stability for fluids which are heated or cooled appears
to have been treated mainiy for cases in which the fluid
would be motlonless, and has not been expiored for a
problem like the present one.''® The first part of that
probiem would be to determine a steady -state {iow pat-
tern for a fluid with a distributed heat source within a
right circular cylinder with its axis aiigned at some
angle to the vertical. For the case of a horizontaj cyl-
inder of infinitely smali radius, the flow pattern has
been caiculated by Yih, %2

Unfortunately, however, that solution is not of great
vajue for the present probiem because the size of the
cylinder radius is a criticai parameter. Nevertheless,
it is expected that Yih’s solution will assist in obtaining
the asymptotic form of the steady-state fiow at iarge
distances from the laser beam cylinder. Once that

time -independent flow pattern has been determined, the
finearlzation of the hydrodynamlc equations for pertur-
hations from the flow pattern will lead to an eigenvaiue
problem, which eventually will yieid a critical vaiue for
W. Ostracii®® suggests that the eigenvalue problem can
be bypassed as the stability of fullv developed naturai
convection flows can be found by using the appropriate
velocity profile in the classieal theory of hydrodyvnamic
stability. This assertion rests upon his analysis of the
stability of free convection above a fiat iieated plate,
where instability first appears for a Reynolds number
of 283.

Above the threshold for beam-induced turbulence, gov~
erned by W,_, general arguments®? jead to a size for the
smallest eddies, (W, /W)/*, For a 1-m beam, if W,
should be about 10%, then the eddies niight have sizes

as smail as 7 cm for a power flux of 1 kW/cm?, The as-
sociated density fiuctuation would then be expected to
result in constderabiy increased scatterir, of the beam.

The argumen's presented here show that there are sub-
stantially more important sources of instabillty in the
laser-fluid system than those discussed In earlier
fincarized anaiyses. It is felt that these fiuid instabil-
ities will be enianced by their interaction with the scat-
tering of the iaser veam, because of the general resuit
that instabiiities in fluids resuit if the heating of the

Aol Phoe VAl A4 Aoy B A ner 1NTD

fluid is greater in those regions where the density of the
fluld is greater.?

At the present time we can only outline the general na-
ture of the effects to be expected above a critical power
level. Much additional work clearly needs to be done,
both of an experimental and theoretical nature.
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A smienieal soluion of the nontmear mactosenpic Liser-flnd - cquations for propugatien U]
Ciansstan laser pulse man s described - The concem of “unty analys” of manenca dillerencimg
whenes 1s mbradneed With the compuiation scheme tsed, the Taser polse conld be fllowed for
s 100 sec, s enotmons encrgy swas put anto the pulse 10 enliance the mteraction with 1he flad
thins the mtal pulse distomion could be obsenved Anals tical evalition ol the compater resilts
produces o detnled guaniitative Check and suggests tat a combmation of analyhic and pamencal
methods would allow a pulse 10 be - convernently Tollowed for minch Jonger perds of e The
preceding paped by the sane authors descrbes vattous types of mstabihiies 10 e amicipated Tor

prepagation oved fong perods of tune o with kige powers

I. INTRODUCTION

The work described in this paper was motivated by the
discovery of instabilities in the system of equations de-
aeribing electrontagnetic wave propagatian and fluld dy-
namics. These instabilities are described in the preced-
ing paper.’ A numerical solution of the full set of mac-
roscople laser-flnid equations (w:thout saturation ef-
fects) Is presented for a Giusslan laser pulse of enor-
mous energy. The computation scheme emploved was
not optimai and the pulse could be foifowed for oniy

10°* sec. Consequently, enormous eneryyy was pat into
the pulse to enhance the laser-fluld interactlon and drive
the anset nf strong distortions and instahllities.

Other caompnter solutions of the lasvr-fiuid equations
have recently heen given? by various groups for physi-
cally reasanable powers, Such calcalations have typical-
Iy dealt with steady-state bewues without saturation ef-
fects, but have included the effects of gravity, More re-
contly salnration effects have been wilded and puise
shape is heiny considered,

In the course of 1hese studies it beeame apnarent that
Yhere was some merit to introducing a new cancept to
iulge the value of an aicarthm for computing the solu-
thns of a system of partial mfferential equations. This
concept was called “ntililv”, and wiil be discussed aniy
Lriefly in Sec, M, The full details will he published
elsewhere. ' The advanlage of this concept is that it 1s
refatively easy to apply to camplicated systems of par-
tial differential equations, whereas the stability concept
leads to a very campllcated procedure for deciding on
the value of a numerlical rou‘ine,

Speed and memory size in a computer piace certain re-
otrictions an ane's ability to investigate phenomena in
e laser-heam problem. In the attempt to caleulate dis-
tortions af the type predicted by the jinearized Instahili-
Iy analysis, cylindricai symmetry was imposed on the
prablem in order to facilitate the computer calcuiation,
Had this nat heen necessary, nr had same other inde-
pendent variahie heen eliminated rather than the angie
ahout the beam axis, much more pronounced evidence of
heam and [tuid instabilities wauld iikeiy have been ob-
served for substantialiy lowe: powers, powers that may
be achievahle, Arguments supporting this proposition
are contalned in the preceding paper., '

LY O Anp! Dlaee Y29 A8 21, A Ay ey 'OTY

In Secs. I and V we piresent the resuits of a caicuiation
af heam distortion for a very high intensity puise prop-
apating through air for several kilomters. Anaiytical
agruments are advanced In Sec. IV which suggest that
the qualitative features of the distortions are correct,
which lends credence to the computer output. Then,
using the computer results as a check, the analytical
pracedure is shown to he adequate for detailed quantita-
tive calcuiatians, By combining the analyticai procedure
developed with approyriate computer support, the puise
couid be foilowed much longer than the 10°* sec de-
scribed here,

Il. DESCRIPTION OF THE PROCEDURE

The iaser-fluid equations were solved in the near-fleld
reglon of a laser pulse, initiaily Gaussian in both r and
2, propagating throuph air at 1 atm of pressure and at
10°C. A cylindrical geametry was nsed and cylindrical
symmetry .o dependence on the anyle &) was preserved
at the price of droppine the gravity *2rm in the Navier-
Stokes equation, Havimg eylindrical symmetry amounts
to a considerahle simpiification in te problem, so that
the Inclusion nf 1he free convection offects due to gravi-
ty was nut attenipted in this analysis. The probiem de-
seribed above amounts to a mixed initial-houndary prob-
jem. The initlal conflpurations of the iaser beam and the
fluid are specified subject to vertain boundary conditions
at 1= 0 which must be satisfied ac all times. Further-
more, tne boundary condition at z2=0 is time dependent,
because the tall of the Gaussian must be fed into the
spatial repion. For the numericai solution, a spatial
mesh of grid points or ctations is used to represent the
rz plane. At a given instant in time, the vaiues of the
various dependent variabies are obtained at ali of the
statinns. The differ ence equations are then employed
with these values of the dependent variables to advance

a step in time. This procedure is repeated over and
aver uatil the desired time interval has heen traversed.
An explicit difference scheme was used In this caicuia-
tion, heciuse such schemes are simplest to handle.

The two major difficulties in using numericai techniques
to solve differential equatinns by computer are error
growth and excessive caompuiation time, In order to can-
trof the error grawth, the utiiity criterion mentioned In
Sec. 1 has been used. Furthermore, highly accurate
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seven-point difference gnotient representations of the
differeri.zi operators were employed to reduce trunca-
tion error. In order to handle tire economic prablem of
large computation tlme, a certaln amount of efficiency
is introduced by minimlzing the amouni of core storage
required of the computer. This was accomplished in
part by using overiaying techniques to store several
pieces of Information at the same site in ihe computer,
Thus Informatlon is stored only as long as it is needed
and then Is replaced with current materlal. The com-
putatlon time was also minimlzed by niaking use of a
nonuniform grid, The seven-point difference reiations
aliowed a relatively Lirge grid size without undue trun-
cation error and the nonuniform grid sjmcing jrermitted a
greater grid density in the region of special interest,
Thus an accurate solution could be obtained with a min-
imum of computation.

The laser-fluld equatious are given in Egs. (1)=(9) of
Ref. 1. As mentioned ahave, tie gravity term wzs
dropped. Also, the thermal conductivity ¥ was taken to
be canstant because its derivatives are very smali. The
equation of state was taken io be the ideal gas law. The
numerical values used for the various parameters are
the sam2 as those given for the linearlzed anmalysis in
Ref. 1, because the same temperaiure and pressure
were used for the undisturbed medinm. The laser fre-
quency w, and the dimensionless absarptlon constant a,
were chosen to be 1. 773 10" sec™ and 10, respec-
tiveily. The wave equation for flnearly polarized light in
an absorptive medium Is reduced to the scalar ~quatlon

n? )
Vi = —;7(4:)4 e = (/7T F). (1)
o al

This equatlon is an approxlmate equation descrlblng an
electric field which is polarlzed linearly, Strictiy
speaking, of course, Maxwell's equatlons do not aliow
cylindrically symmetric linearly polarized beams in
charge-free space.

The solutlon of (1) Is taken to be in the form
E=j(E, +iE)expiluyt -k 2)exp(~Laz) +c.c., (2)

where E, and E, are slowly varying %incuons of r ai! !
and the laser frequency and wave number are related by

)} Anpl Phaye

Vel 44 NMn R Logey 10792

)
(1d) 1210 sec
0

fiG, 1. On-axis magnitude of the ciectric
field 1 E1 is shown as a function of |2 =2,
at four different times, As shown in Eq.
(16), z, = ¢t locates the "center” of the
puise. The solid curves show the fcading
edge of the puize and the dotted curves de-
pict the trailing edge. Distances along the
z axis are expressed in units of the grid
size: Az =0.45 km, The quantily 1 E| shewn
is defined in Eq, (13), so that the exponen-
tial damping factor s not inciuded in the
graphs,

foe?} =Chy 3)

where ¢,, Is defined in i%q. (11) of Ref, 1. Equatlon (2)
was substltuted into (1) and the second derivatives of E,
and £, with respect to time were dropped. From the
real and imaginary parts of tiie resuiting equation, cou-
pled simultaneaus differential equations for Eyoand
were obtalned. Tiese equations are also coupled to the
differeniial equations for p, T, and lhe cylindrical com-
ponents ¢, and v, of the fluld velociiy. The use of cyiis -
drical symmetry allows the slmplltication #,=0,

The easlest way to obtain a variaiile grid size Is to In-
troduce a transformation to a new indpendent variable,
Thus, in order to have more grid points in the region of
spegial Interest, small r, wie nonlinear transformation

rin=x/(1 -x) 4)

was employed, The scale vaiue », was chosen according
to the dictates of convenlence and will be shown in Eq

o).

Because of the symmetry of the prablem and the regu-
larlty of the differential equations, the following bound-
ary conditions must be satisfied at == 0:

Py 2B 2T _an_iw,_de, v, o

dx ¥ 2x Ax dx 3z az° *
°r, M,
Er e ’ PO 8)

The laser-fluid differeniial equations muist, of course,
be converted to difference equations before a commter
solutlon can be attempted. As indicated carlier, seven-
point difference quotients were used to represent the
differential operators, hut these difforence quotlents
will not be presented. (The scheme was a straigitfor-
ward expliclt difference representation, )

Once the difference equations have ieen written, It Is
vital to have some criterion to determine useful time
step slzes and correspondlng grid spacings. It is not,
however, necessary to demand that the difference
scheme be stable in the classical sense, In fact, the
classical notion of stabillty is irrevelant to computer
solutiza of differential equatlons, particularly for non-
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FI1G, 2, For detailed compartson, the 2 profHe of the on-axls
cicetrte lickt £ s shown it several thmes, the wnlt &z s
usoed lor distunces along the 2 axis, ‘The curves have been dis-
placed 1o the foit and the teading edges made 1o coincide at =7
helght ton (erg/ enm®)V* tor 1 EL, The absclssa for this inter-
sechion of the curves has been Lubeied 42,5, the location of
this poiny at ¢ 0,

linear systems, This argument is presented in detaii in
another paper’ and another Kind of eriterion, “utiiity™,
Is proposed, A diffevence scheme is “usefui™ for pre-
seribed ¢ and N if the compuier soiution of the scheme
produces resuits for A time steps which differ In mag-
nitude from the correct soiutlon of the orlginal differen-
tial equalions by an amount less than «, Thus, utillty
analysis is totaily diffevent in philosophy than stability
and, incldentaily, is far easier to apply., A number of
theorems have been deveioped which allow rapid and
powerful assessment of Vhe utility vegions of differencing
schemes of all types, Because these matters would only
extend the length of the present paper and because it 1s
believed that utitity procedures wiii be worthwhiie In a
broader context than the probiem at hand, a separate
paper 1s devoted to the subject and only a brief skelch of
the analysis wili be given here,

It turns out that a utlilty region for an expliclt differ-
enclng scheme can he determined from a reiation of the
form

ar<{(4B)A N7, (6)

where At 18 the time step slze, N is the number of time
steps to be made, ¢~10"%, and § Is a function of the spa-
tial mesh slzes and Is determined from the differencing
scheme, For the seven-polnt expiiclt difference scheme
used to represent the laser-fuiid system, & Is Irlvialiy
determlned to be’

Eac[3/k, (naxf +2/a2], (1)
80 that the utllity restrictlon predicled is
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1/cat=12/k, (n,axy +8/az, (8)

Since & Is glven oniy approximately by (7), the laser
power [, does not appear. The differencing scheme em-
ployed was not optimai and its utiiity region 1s entirely
dominated by the eleciric fieid deveiopment and Is In-
sensitive to the fluid parameters. Thils was, however,
the scheme employed In the present soiution,

Condition (8) 1s such a strong constraint that one imme-
diateiy wonders if it is really necessary to obey it. Part
of the utility phtiosophy Is to obtain a constraint iike (8)
and try it on the computer, I'hen one can try to vioiate
the condltion, using a lavger A/, and compare the re-
sults. This was done for the probiem discussed in this
paper and no escape from (8) was possibie for the dif-
ference scheme used. In fact, if the criterion was vio-
lated by a factor of order 5 In A/, then ciasslc Instabii-
Ity phenomena were observed In the computer output.
Thus, by a stroke of bad luck, it appears that (8) must
be obeyed.

In order to emphasize the Impilcations of (8) for the
study of the propagation of iasev puises, a description
of the accessible parameter regime wiii now be given,
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FIG, 3. Radtal proftie of 1 E} t3 shown for ¢t=0 and for ¢=10%
sce for sltees raken through the on=axis maxkmum z, in the 2
profile,
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FIG, 4, Details of the radiai profile are shown for various
times. in ali four eases the radial slice through the on-axls
maximum of the z profile is exhibited,

As a starting point for this discussion, the parameter
values used in the actual caicuiation wiii be iisted. The
electric field at =0 was taken to be of the form

E = Fexp(-4(r/r,F] exp{-4[(z ~ 2,.) /2, '},
E,=0, ©)
where

voufuil (1/¢) width of E,(r,2=2,, =0)

= a(full (1/¢) width of [, at z=2,,, 1=0];

L =[on-axls intensity (in erg/cm?sec) at r=Cz=z,,
t=0, time averaged over several optlcal periods]
21,,) /2 FY;

z,=full (1/¢) width ol E,(r==0,2, t=0).

2,,=locatlon of the peak at t=0;

2/ 16 1, 64 U
Fa:(fo,wsc.(co,wgcr;,"ﬂ(Zw;”’co‘?ozo (10)

= peak value of the electric field, squared;
P, =totai power (in erg/sec) of the pulse at £=2z,,

{=0, time averaged over several optical peri-
ods;

U=total energy In the pulse at /=0, time averaged
over several optlcal periods.
The values taken for these quantities were
%=200cm,
2,=9x10° cm=9 km,
2,=13.5x10° cm =13 km
F=4.1x10" (erg/cm*)'/? , (11)

P Boeal Fllice, A2g ) 28 . B A 08 VOPR

7 =3.3x10" erg/(cm?sec),
P, =5.2x10" erg/sec,
U=9,8x10" erg,

and the air wae taken to be initiaiiy in Its unperturbed
state at 1 atm pressure and at 10°C, The reason for
these astronon:ical powers wiil be explained later,

The spatial grid was composed of 80 x16 = 1280 mesi
points, The z axis was eveniy divided into 80 steps of
size Az2=0.45%10° cm =0, 45 km beginning at z=0 and
extending to z=35.6x10° cm =35.6 km. Thus the peak
of E, was initially iocated at the 30th mesh point on the
z axls ~nd its 1/e wldth extended from the 20th to the
40th mesh point. The radial varlabie x has the range
0s<sx<1 and this range was eveniy dlvided into 22 steps
of size Ax=4;, but only the 16 sites closest to the 2z
axls were used. The more distant sites correspond to
radial distances greater than five beam half-widths. The
first step away from the z axis corresponds (o the radi-
al distance Ar =200 cm/21=9.5 cm =% x (radial haif-
width). The time step size was taken to be At=10"" sec
and 100 steps were made so that the time interval 05 ¢
<10"% sec was traversed,

Taklng these grid sizes and time steps and subtituting
into the utllity condition (8), one gets
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FIG, 5, An off-axis maximum in the radial profile is shown

at #=10% sec. The slice shown exhibits the radiai profile at
2=31, whereas .he principai peak of the puise is on axis at
2=35,3. The slice at 2 =31 contains the greatest off-axis effect
and, therefore, locates the lwo secondary peaks whieh have
developed in the pulse. These secondary peaks are aiso Indi-
cated on Fig, 9.
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FIG, 6, Phase informution is presented by showing | E;| as a
function of 2 at £=6x 10 sec, For comparison, the dushed
curve shows | E1, Equations (2) and (13) of the «wext define | E;)
and {E1,
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=12/k,2(axy +8/4z . (12)

Thus, for the chosen step slze Az, the value used for
At would violate the condition, were it to be doubled, Of
course, the condition (8) Is only approximate, but, as
mentloned above, good solutlons eould not be obtained
for a¢~10"° for Az=0.45" 1, Clearly the vaiue 4 used
for Ax does not saturate the Ax plece of (12) and one
could probably use Ax as small as &. Such a smali step
size for Ax would, however, require three times as
many spatlal mesh points and would exceed the storage
capaclty of the computer which was used,

The desire is to use as large a value of Af as one can,
n this regard, the Ax plece of (12) Is generous and
wouid permit A¢~10"°, The 2 step size wouid have to be
increased to Az~5 km to allow this, however, Such a
large step size would be larger than the 4, 5 km haif-
width of the puise seiected, so that no details of defor-
mation of the pulse couid be observed.

If the beam Is made narrower in radial extent, the
Fresnel length decreases and diffraction effects become
important, The Fresne. iength is 310 km for =200 em,
so that one would become involved with far-fieid effects
if the bearn radius were decreased by more than a factor
of 5. Making the pulse fonger in the z direction expands
the time scaie over which interesting effects may be
studied. If, on the other hand, the pulse is shortencd in
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the z directlon, then one must shift to smaiier vaiues of
Az In order to he able to foliow details of the develop-
ment of the pulse, Shiftlng to smaiier Az requlres, be-
cause of (12), that one use smailer vaiues of Af. The
net effect is that no profit is derlved from using shorter
puises, because they can be followed oniy for corre-
spondingly shorter tihes,

One aspect of the parameter regime has not yet been
discussed: the range of power for the beam. Since the
power }, does not appear in the utility criterlon, Its role
must be determiped by experimentatlon with the comput-
el program. Veiy smail powers are not interesting be-
cause there i3 very liltle interaction with the fiuid. In
order to see instabliities and nonllnear effects during
short times, one wouid wish to consider beams with
large power denslties. The extremeiy farge values
shown in (11) produce interesting effects, In a time in-
terval of 10™* sec. Such beams cannot be followed for
more than about 100 time steps, however, because the
various dependent variabies begin to deveiop large cur-
vatures and vary on a scaie smaiier thin the mesh sizes.
Thus If one wishes to foliow the development for a long
period of time, the mesh sizes must be decreased and
eventually the tlme step wiil have to be smailer, and
then miny more time steps wili be required. In this re-
gard, one must keep in mind that if the mesh size 1s de-
creased, whiie the initi7l puise size is not decreased,
then more mesh points wlil be required and the storage
capacity of the computer also becomes a limiting factor,
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FIG, 7. At t=8x10* gce, 1E;| and | Ei are shown on axis as
functions of z. Two nodes have developed und E, 18 negative In
the reglon of the power peak. The sign of E,; in the various re-
glons is indicated on the flgure, The nodes are also shown in

Flg. 9.




3652

i ] an 50

2

a7 (82:048km) ——e

FIG, 5. At =10 see, |Ey) and | E} are shown on axis as
functions of 2z, The sign of E, is indicated in the various re-
gions, There are now four nodes, The nodal curves are phase
fronts and are shown in detail in Flg, 9.

The finai remaining option is to increase the power in
the bram even more. The net eifecl is that the large
curvitures develop faster and the development can be
foiiowed oniy for shorter periods of time,

One finai remark about numerical saiution of the iaser-
fiuid equations wiii be made befare discussing the re-
sults of the computer caiculation. Strong growth, insta-
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bilities, and nontinear effects, can oflen not be folowed
because of The mesh sizes emvioyed, If these strang
oscitialions or secular growths are generated by tiny
rapidly changing terms, that is, if the instabiiities arise
dne to ripple effects which become strongiy enhanced,
then a crude mesh size can smooth these effects out and,
thereby, pirohibit the occurrence of the strongiy growing
phenomena by removing their source. Very strong in-
stabitities were found in Ref, 1 for the linearized fuser-
fluid equations. The strongest of these instabiilties are
generated by very short waveiength ripple. The mesh
size empioyer in the present caicuiation wiil begin to
wash out ripple about an order of magnitude iarger in
waveienutl than the ripple which is most strongly ampii-~
fied in the llnearized anaiysis. Thus, one must bear in
mind that some physical sources of pulse distortion wiii
be excised by the megsh seiected,

Accepting the many restrictions noted above, we have
examined the propagation of a 200-cm by 9-km puise
with 10" erg for 10°° see. The pulse moves 3 km during
this time and it is possible 1a observe the onset of the
1nser-fiuid interactlon in some detaii,

111, RESULTS OF THE COMPUTATION FOR
THE ELECTRIC FIELD

The resuits of the caleuiation are presented in Figs.
1=17. The eiectric fieid is convenientiy considered in

terms of the quantity
|E| = (E2+ E2) /2, (13)

where £, ~nd E, are the stowly varying electric ampli-
tudes defined in (2). The instantaneous eiectric fieid is
thus given by

E=|E|cos(w t -k, 2+ 6;), (14)
where the phase &, is given by

by =tan™(E,/E,).
As shown in (9), at =0, I, is taken to be zero and,
consequently, &, is zero initiaiiy, Thus

Peak of I-profin et |E |
o 100 " vae

F1G, 9, Varlous properties of the pulse
are ~hown in the »z plance. The location of
the peak in the 2 profile is shown as a
function of » at ¢=0 and at =10 see, The
phase fronts with E, =0 are shown at (

£- 10 sce. The open circles locate the z-
profile nodes of Ey at £ =8x10% sec, T'he
small squaves locate the secondary max-
ima of the pulse at ¢=10"° sec,
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FI1G, 10, On-axis temperalure increment T = Ty Is shown as a
funciion of 2 at t- 10 sec,

E{=FE, at(=0, (15)

and E, is described by Eqs. (9)=(11) initiaily. This ini-
tial pulse shape in exhibited in Figs. 1(a) and 3.

In Fig. 1the z profiie of the pulse is shown at the initiai
time, at 10°® sec, and at two intermediate times. For
1+0, the puises are not absolutely symnietric about
their peaks. In order to exhibit this asymmetry, the
curves are piotted as a function of 1z -2z_1, where z is
the center of the puise, This device ailows direct com-
parison of the ieading and trailing edges of the puises,
The center z_ is defined to be the point equidistant from
the leading and traiflng edges at | E| =1 (erg/cm?)'/?,
Thes : vajues are (/ in sec)

=0 (=6x10"*

(=8x10"*  _10°*

(16)
2,=30 2, =34 z,%35.3 2,%36.6,
where for convenience, distances along the 2z axis wili
be glven in units of grid size: Az=0.45x10° cmn =0, 45
km. One notes, therefore, from (16) that this puise cen-
ter propagates at the velocity v.22,97x10" eni/sec, the
velacity of light, The pulse peaks, however, are ob-
served to drift backward with respect to z, ( In sec):

t=0 / 6x10°® (=8x10% (=103

am

2,530 2,534 2,%35.2 2,353,
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so that after 10 sec, the prak has lost about ! km with
respect to z_. Note that the exponen'iai damping factor
shown in (2) is not inciuded in the quantity | £| appearing
in the graphs. For air, this factor |s iarger than 0, 95,
even at (=10 sec. Other than this effect, very iittle
energy is fost from the beamn due to heating of the fluid,
so the distartion effects shown in Fig. 1 are rather
minar and ave nottceable only near the peak of the jpulse,
Extra detail of this peak distortion |, shown in Fig. 2.
For purposes of this display, the icading edges have
been placed together so that the curves intersect at | I
=10* (erg/cm™)' /2 and the corresponding abscissa has
been fabeled 42. 5, the iocation of this point at /--0, The
retrograde peak motion and the corresponding {oss of
fore and aft symmetry in the viclnity of the peak are
plainly seen.

The radial heam profile Is exhibited in Figs. 3 and 4,
The radlal silce shown at each vaiue of the time is taken
through the position of the maximum z, inthe z profiie.
In Figsi, 3 the entire beam profiie is shown for the ini-
tiai and finai times only, Comparlson of the curves re-
veais a smail on-axis increase extending out to the

beam haif-width (haif of the fuii 1/e width) at 4i,= 100
cmn. The effect amounts to a 477 increase in the on-axis
intensity. Detaiis and intermediate states are given in
Fig, 4.

Although it may appear from Figs. 1—4 that the energy
In the puise is not conserved nroperiy and that the beam
Is gaining energy, such is not the case. The total energy
in the puise is in fact constant to withtn 57 throughout
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FIG. 11. Radial profiic of the temperature Increm »nt is shown
at £=10% see for the shice througir the maximum of the 2 pro-
file. This maximum is at z - 33 as may be seen in Fig, 10,
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FiG. 12, z component v, of the fluid velocity is shown on axis
as a function of z at =103 sce, A double fog plot is used which
omits values of r, between 107 and =10 cm/sec,

the computer caiculation. The shape of the pulse is
merely becoming slightly more compilcated, Although
the radial peak is on axis In the slice through the peak
In the z profile, thls ls not the case for slices taken he-
hind z,. For example, at /=10 sec, the princlpal peak
is at 2,235.3. As one moves away from this peak to-
ward the traiilng edge, the radiai peak moves off axls
giving a maximal effect near 2=31, The principai peak
of the puise is, however, always on axis, The radial
profile at 2 =131 is shown in Fig. 5. This ls ciearly only
a small detail at /=10 sec. The position of thls off-
axis secondary peak ls also located in Flg, 9 and
marked with tlny squares,

In order to foilow the development of the phase of the
electric fieid, the quantity | £, | 1s plotted in Figs. 6-8,
for 1 +0. Of course, at =0, |F,I=1E| and the phase &,
Is zero. In these three figures the graph of | E£| Is
marked« with dotted lines for comparison, The corre-
sponding value of | £;| can be deduced from these fig-
ures, using (13). These figures sbow far more dramatlc
effects than the curves discussed ahove, At 1=6x10"*
sec, the phase ls stlll nearly zero and k£, 1s positlve
everywhere, At 1=8x10"" sec, however, F, has changed
slgn over a 3-km region extending from sllghtly In front
of the peak of | E| toward the trailing edge of the beam,
Thls is clear-cut evidence of the onset of laser-fluid
interaction In the tralling edge of the beam, It Is clear
that the front ol the pulse and the distant tail are, as
yet, unaffectod by this interaction. 1t is Interesting that
the unperturb..d part of the leading edge does not reach
as far back us the principal peak. Thus, the peak al-
ready feels the cffects of the Interactlon to some degree

/

and comparison of (16} and (17) reveals that the peak
will now begin to lose ground with respect to the center
of the pulse. Thls effect has already been noted in the
graphs of | E|.

Since there are now places wiiere | k,| Is zero, It s
clear that the phase goes to !z at these sltes. The am-
plitude E, responds strongiy at those places where E,
=0, fulfiliing the obligation to conserve power, One
notes that the graph of | £! remains very smooth, giving
no indication that tbe phase 18 varylng rapidly, Flgure 8
shows the later development of the region In which ¥,
changed sign. Thr: region in whlch k£, <0 is now T km
long, nearly as lurge as the 1/¢ width of | El, This re-
gion has advanced now to i polnt well In advance of the
princlpal peak and extends back far Into the tall. It ap-
pears that this node is propagating forward at nearly
four times the speed of ligiit. Furtbermore, there has
been another sign revers d of k| slightly behind the
peak. It is this kind of osclilatory behavior in F,, with
large variations on the scale of the chosen mesh size,
that brings a halt to further observatlon of the beam de-
velopment by this method.

On tite rz plane shown in Fig, 9, the constant phi se
curve £, =0 is shown in detail at 1=10"* sec, Also
marked, wlth small open circles, 1s the on-axis extent
of the similar curve at 1=8x10"" sec, encountered In
Fig. 7. Also indicated on the same figure is the locus of
maxlma In the z profile of the pulse for off-axis slices,
both at =0 und 1=10"% sec. At =0, the pulse is de-
scrlbed by (9) and clearly tbe off-axis slices all have
maxima In z posltioned at z,,=30. As the pulse propa-

0 .
O 02 04 06 08 10 12

r
—,°< ('o' 200cm ) —=

F1G. 13, Radial component v, of the fluid velocity Is shown as
a function of » at #=10 sce, The silce is taken at z2=32, the
location of the “center of velocity” shown In Fig, 12,
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FIG, 14. On-axis fluid density decrement, = (p=p,), is shown
as a function of z at t=10" sec,

gates, however, the peak moves slower than the velocity
of light, as previously noted. The off-axis portions of
the pulse, however, have much smalier intensity and,
consequently, interact very jittle with the fluid. These
portions of the pulse wili suffer no delay, and move
steadily ahead of the principal peak. One notes that at
two-thirds of the radiaj haif-width of the beam, the de-
fay has disappeared almost compietely, As mentioned
above, the small squares locate the secondary peaks
present at {=10"* sec.

IV. ANALYTICAL PROCEDURE DEVELOPED
TO EVALUATE AND EXTEND THE CALCULATION

The phase-front information presented in Figs. 6-9 is
an interesting feature of ‘he results of the computer so-
lution, Since | E,| turns out to be a rapidly varying func-
tion of time, it is of interest to attempt to understand
the mechanism responsible for the behavior of E,, In
order to understand this hehavior, one must realize that
the phase depends on the state of the fiuid. The state of
the fluid given by the computer calculation is shown in
Figs. 10—~16. Before these figures are discussed, how-
ever, it is convenient to examine certain analytic esti-
mates for the fluid variabies. Such estimates wili allow
insight into the behavior of E, and, later, wili faciiitate
the discussion of the computer results for the fluid
variables,

In order to describe the behavior of E,, it is useful to
write the electric fieid in the form

J. Appl. Phys., Vol. 44, No. 8, August 1973

JubY

E=&(r,z~ct)explilw,t = (Vew, fe)z]} +c.e., (18)
where

& = LF exp(~ 4(r/r,) | exp{-4[(z = c1) /2,F (19)
and

Ve=1+[(e=1)/2p)py , (20)

wtere F is a slowly varying amplitude, p,=p~-p, is the
local denslty excess, and for the present considerations
z,, has been put equal to zero. Combining Eqs. (18)—
(20), the electric field can be put in the form shown in
(2) with

el et {55
el oo 5]

These expressions agree with (9) at =0 and offer a way
estimate the behavior of E, at subsequent times, On the
basis of (21) the nodes of E, might be expected to be de-
termined by

cosfk,2[(c, = 1)/2p,] p,}=0. (22)

Actuaily, this expression shouid be modified siightiy if
one wishes to atteinpt to get quantitative agreement with
the computer solution. It is ciear that (21) requires E,
to vanisih at z=0 at all times. This is not the same
boundary condition which was used in the computer solu-
tion. Actuaily one should use

E, ~cosy
with
e
s
5
e
"yl T N .
-10° = (14200 cm) —
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Z
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FIG, 15. Radial density distribution is exhibited as a function
of rat £=10% gee, The slice Is taken at 2= 32, the location of
the density minimum detailed in Fig. 14, A double log plot is
used which omits values between 107! and - 10°? g/cni?,
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FiG. 16, On a double log plot, the various laser and fluid vari-
ables ave simuitancously plotied versus 2 at £+ 10 see so that
the spatial location of the various pulscs can he visualized,

d=ky (1 e = 1)/20,) 00l 0 d2 (23)

The integrand in (23) shouid be evajuated at 2’ and ¢,
where

el =t)=2' =2,

It is clear from (21) and (23) that the mechanism re-
sponsibie for the behavior of £, is easiiy exhibited. To
actuaily foiiow the behavior of £, howevcr, it is ciearly
necessary to determine the state of the iiuid. In particu-
lar, the density excess p, must be obtained as a function
of time and position, In order to anaiyticaliy describe
tie fluid for the time interval and parameter ranges of
the computer soiution, the iaser-fiuid equations may be
simpiified to

17, vy=1ap,  oc—x
==k =5 4 ET.
ma*F atck (24)
and
2*p,
SE =WV’ T, (25)

where T, is the local temperature excess, 7'~ T,. One
must recaii that the intensity, c?, appearing in (24) is
a function of time and position, Integrating (24) from
zero to ¢ and combining the resuiting equation with (25)
to eliminate 7,, one can obtain

%p 280 (321., '_ ry
3 h cC )o] - 8)'

’ [¢]
TR PR
() =it 0

It is straightforwaid to iniegrate this expression and,
aithough the deizils wiii not be given here, it is ciear
that p, will have the form

m= [(87:--1) t‘xn(- %)] F(z,1), 27

so that p < p, cn axis and there is an off-axis maximum
in the density. In other words, there wiil be a piie up of
the fiuid at a distance » = }r, from the axis,

The temperature distribution can easiiy be obtained by
integrating (24) from zero to 1:

2 (]
4 =5-Ql"*cxp (- 8,—,)/- exp| - 8(1) e, 128)
el \ YolJe-ar 25/ §%0

A negligible term involving p, can be evaiuated using
(27) and has been dropped to obtain (28).

Combining (27) wit!. (23) the behavior of E, can be visu-
aiized anc studled anaiyticaily. Closed contours s ich as
those shown in Fig. 9 are predicted and other quaitilive
features are correct. A detalied comparison of this an-
alyticai procedure and the computer resuit is: in pro-
gress and it is now clear that striking quantitative
agreement Is obtained. This succ ss is of great Interest
because the analytic pracedure, «niike the present com-
puter soiution, is not limlted to 10°* sec, For the pres-
ent,"however, only the computer sofution is presented.

V. RESULTS OF THE COMPUTATION FOR
THE STATE OF THE FLUID

Anaiysis of the computer resuit for the state of the fiuid
at {=10"* sec wiil now be considered. For this discus-
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F1G. 17. Location and fuli 1/¢ widths of the various laser and
fluid pulses are shown vs 2z, The peak-to-valley distance is

shown for v,. The Initial and finai locations of the faser power
peak are also indicated,
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sion, it is useful to keep severai characteristic dis-
tances in mind, Since the state of the fluid is governed
by the tntensity profiie

I(r.2, 02 3, ) | k%, (29)

rather tlran by lb directly, the foliowing initial param-
eters are relevant: The fuli 1/¢ width of the z profile of
the inteasity ts

2,//5=14.1 inunits of 3z =0, 45 km, (30)
At 2=2,22,=2,15,

2

;’i.’; 0 (31)

ar

s0 that 31,_/82 has extrema separated by 10 units, The
full 4 width of the radial intensity profile is

¥oNZ = 0,707, = 141 ¢m, (32
At y=1r,=50cm,

2
oo, : (33)
so that I, /o has a maximum. The maxima on opposite
sides of the axis (dianmeter of the density doughnut) are
separated by 100 cnr.

L
The local temperature excess T=17,, where 7,=10°C,
is shown in Fig 10 as a function ot z at 1=10"" see.
This curve is in complete quantitative wrecment with
the anadytieal result shown in (28), The hottest place in
the beam lies on the axis at 2=233.3. Since the intensity
peak is at z,=35.3, it is clear that the thermal peak is
fagging behind the intensity prak. Since z,=36.6 at this
time, it is clear that the thermal peak is almost exactly
midway between the initial and final pulse centers. Thus
one finds, as expected, that the thermal peak propapates
at velocity e tor smail times, This and other proper -
ties of the thermal proflie are readily understood on the
basis of the loMowing congiderations. The temperature
respowds to the heat deposited in the mediam, so that
from (28),

T(z)-?j,i/l

[-(lp-lm) /

o dz’
= 5 - 2/ 1= 0)=-).
(»C‘, 1(r, 2t )( ) (34)

Due to the symmetry of /, and the fact that it is
Gaussian, it foilows from (34) that 7(2z) should reach a
maximum midway between 2, and z, for small times,
Furthermore, the graph of 7(z2)= 7, shouid he symmet-
ric about its maximum. Both of these f atures are evi-
dent in Fig. 10, Since the peak moves inuch less than
its haif-width in 107" sec, the integrand in (34) is essen-
tially constant, Evaluating I, (r, 2’, /) at the midpoint of
the interval, one obtains

T(2)=T,=((2,~2,,)/c o /p,C )1, (r. 2 -Hz,~2,), (=0).
(35)

From (35) one conciudes that the width of the thermal
distribution should equal the width of the intensity dis-
tribution. Indeed, one sees in Fig. 10 that the tempera-
ture distribution has a width 14,1, which is to he com-
pared with (30),
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The corresponding radlal temperature distribution at
2=133, the position of the maximum at =10 sec, is
given in Fig, 11. This curve, also, ts in compiete quan-
titative agreement with the analytical resuit shovn in
(28). The temperature has reached a maximum of more
than 1000 °K on axis and the full width of the distribution
is found to be 0. 67»,=134 cm, 5% narrower than the
initial radial intensity width, One mig"t have expected
the temperature d'stribution to be broader than tie in-
tensity profile because the targe radial velocity of the
fluid should carry some of the 1eposited energy away,
In fact, this effect may possibly be observed in the fol-
lowing way. One might compare the temperature distri-
bution not to the origlnai Gaussian intensity profile, but
rather to the 1 /¢ width of the radiai intensity profile at
(=10 sec. This final intensity profile has a width of
128 ¢m or 577 iess than the temperature width, The
average of the two intensity widths is 134, 5 em, aimost
exactiy the observed temperature width, This average
may be the best measure, becuase the thermal peak is
midway between the inlt” i und final intensity peaks,

The z component 1, ot the fluid velocity is shown in Fig.
12 as a function of z. A doubie log plot is used which
omits values of ¢, between 107" and =10"° em/sec. This
kind of plot allows negative values of 1, to be plotted
beiow the “axis”. The zero of the veiocity distribution
occurs around z2=32,2, sothe “center of velocity” lags
slightly behind the thermai maximum. From the differ-
entiai equation for 1,, one might expect to find

T z (36)

50 that the peaks in Fig. 12 would he separated by 10
units according to (31). Indeed, the peaks are found to
be separated by 10. 2 units. Furthermore, since the
temperature curve is symmetric about its maximum,
(36) would suggest that 1, should he antisymmetric about
its zero, Thts effect is correctly observed in Fig, 12,
The velocity distribution is delayed with respect to the
temperature distribution, but this symmetry property is
unaffected,

At the same value of z, corresponding to the center of
veiocity of the z component, the radiai component 1, is
plotted in Fig, 13. This value of 2 corresponds aiso to
the largest radial velocities, so that z=32 might aiso
be termed the site of greatest kinetic energy in the fiuid.
The radial velocity maximum is 4600 times {arger than
the maximum axial velocity, This effect arises because
of the great disparity in the intensity widths in the two
directions, As a matter of fact,

1 S
Udns_ 4605 ana 20-9X10_4cnq
0, doe o 200

The curve of v, is forced to go to zero, as » goes to
zero, by the boundary conditions shown in (5). One
notes, however, that the peak is located at the distance
0.25r, from the axis, exactly the location of the maxi-
mum of 91, /or shown in (33). Thus one finds

AT,
rodr ar (37)
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as would be expected from the differentail equation for
1

v

Bringing up the rear in the sequence nf effects is the
density mininum at 2=31.5, The densily decroment
- (p=py) is shown in Fig. 14, Using (25), one migh

expect

2 2
'a’_ll;~§_,7i , (38)
Y

sn that p and T will have the same 2 dependence. ! There
should, hawever, be a double time delay, since two time
integrations are indaicated in (38), The width of the den-
sity decrement Is found to be 14,5, about 34 wider than
the thermal and intensity widths, The maximum frac-
tional decrement (p, - »)/p, =4 x10°%,

The radial density distributlon is exhibited in Fig, 15
at 2=32, the location of the density mnimum In the 2
profile. Again, a doubie log plot is given so that both
positive and negative density excesses can be conve-
niently represented. This tinie i density pile up is ob-
served because the fluid has been blown away from the
axis so fast that a compresslon wave ls generated, The
zevo in the _caph is at 0. 36y, right at the half-widths
of the thermal and intensity distributions. Thus inside
the theymal half-width the density is depressed; outside
the fluid has pited up. The radial density profile shown
In Fig, 151s in excellent agreement with that predicted
In (27). For example, the zero observed at »/y, =0 36
Is predicied to occur at

»/r=1/VE=0.354.

similarly, the tocation of the peak observed at »/»,
=0, 51 is predicted to occur at

r/n="k.
Simllarly, the ratio of peak eight to vailey depth is also
correctly predicted. As a matter of fact, when one takes
the trouble to evaluate the function F(z,/) appearing in
(27), he finds precise agreement between (27) and Fig.
15. Thus, both (27) and (28) are in con:plete quantitative
agreement with the result of the computer calculation.

Figures 16 and 17 exhibic the parade of effects, ilius-
trating graphically the various deiays, pulse shapes,
and widths, Phvsicaily the delays make sense. First the
beam blasts through, heating the fluid as it passes, As
explained above, the temperature maximum moves at

' and, thus, behind the taser peak. As this tempera-
ture wave passes along, the fluid picks up kinetic energy
and the flow velocities increase. The center of this ef-
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fect trails the heat wave, allowing time for the fluid to
respand, Then, as the fluld begins to flow away from the
propagating center of veioclty, density deficits are left
In the wake and corresponding radlal compression
waves set out from the beam axls.

Vi. SUMMARY OF RESULTS

In portions of the pulse where the intensity Is small,
there is very little interaction with the fluid and these
portions move without appreciable distcrtion, The peak
of the pulse, however, interacts fairly strongly with the
fluld and the peak Is delayed relative to the center of the
pulse. A parade of effects ensues; the center and edges
of the pulse are followed by the peak, which, in turn, Is
foliowed consecutively by the thermal wave, the center
of velocity. and the density waves, The front edge of the
pulse propagates without appreciable distortion, but
strong phase osclllatlons are set up near the peak and
rapidly overtake the undistorted front section indicating
that soon the entire beam wiil be distorted to sime de-
gree. The strongest instabilities predicted In the lin-
carized analysis of Ref. | could not appear in the com-
puter solution because they are generaled by ripple with
waveiength an order of magnitude smaller than the mesh
size used, The success of the analytic analysis present-
ed here suggests, however, that such instabilities are
not important for the time interval considered.

There is very little hope of obtaining computer soiutions
of the laser-fluid equations except in the tightly limited
regime reported here, unless a different calculatlonal
procedure can be devised, Since, however, It appears
that a certaln amount of analvtical headway has been
made, there is reason to betieve that, with appropriate
combination of analytical and computer methods, the
tream can be followed for considerablv longer periods of
time, Effort Is currently being directed toward this
objective.
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